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ABSTRACT

A brief summary of the results obtained in research sponsored by the

Naval Research Laboratory under Contract N00014-80-C-0802 is presented.

The research covered several problems in the area of spread-spectrum random-

access communications for fading channels. The results are applicable to

the Navy's intra-task-force communications network.
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SUMMARY OF RESEARCH RESULTS

Our work in spread-spectrum communications that was supported by this

contract focused on the performance of slow-frequency-hopped (SFH) spread-

spectrum communications. A variety of channel models were considered to

reflect varying degrees of amplitude fading and selectivity. Of primary

interest is the class of slow, nonselective, Rician fading channels in

which there are two components of the received signal: a non-faded or

direct-path component and a faded or scatter component. The scatter com-

ponent is assumed to undergo slow, nonselective, Rayleigh fading in this

model, so that the Rayleigh fading channel is obtained as a special case

(no direct-path component). In addition to the received signal, additive

white Gaussian noise is present at the front end of the receiver, so the

non-faded additive white Gaussian noise channel is also obtained as a

special case of the general model (no scatter component). The effects of

selective fading were also considered, especially frequency-selectivity

which produces intersymbol interference. Details of the various channel

models are described in Appendix A.

Several bounds and approximations for the bit error probability in a

SFH spread-spectrum multiple-access system are presented in Appendix A and

in [11-[31. Both FSK and DPSK data modulation and selective and nonselec-

tive fading channels are considered. These results are very general in

nature and can be adapted to a wide range of systems and channel models.

A specific problem that can arise in a system like the intra-task-

force (ITF) communications network is due to the possibility of a specular

multipath signal with a relative delay greater than the dwell time of the

frequency hopper. This problem, although not addressed specifically in
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Appendix A, can be analyzed by the results developed in our research. The

results of Appendix A are applicable to a system in which there are K simul-

taneous SFH signals. If there are K' simultaneous transmitters and if each

signal produces one nonselective Rician faded component plus one specular

multipath component, then there are K- 2K' interfering signals. If the

relative delay of the specular multipath component exceeds the dwell time

then the bounds and approximations given in Appendix A apply with Ku 2K'.

In such a system there are K-1 - 2K'-l interfering signals for each receiver.

Application of the results of Appendix A to such a system is illustrated

by the data of Table 1. The only reason for presenting numerical results for

this special situation is that perhaps larger values of K are of interest

than for a system without the specular multipath components. The results of

Table 1 are for the same model as described in Appendix A, and the notation

is exactly as used in Table 2 of Appendix A. The approximation PG given in

Table 1 is a new result (obtained after [4) was submitted for publication),

which we believe to be slightly more accurate than the approximation =(i)
A

described in Appendix A. Both P and 'P) are for channels with fading

which is slow relative to the hopping rate (case (i) described on page 10

of Appendix A).

The methods and results developed in Appendix A can also be applied to

determine the probability of error in a coded SFH spread-spectrum system.

For a fully interleaved system these results can be applied directly. This

is because the interleaving breaks up the error bursts due to the fading

and multiple access interference, in which case the bit error probability

is the performance measure of interest. Thus, for interleaved systems the

performance of various codes can be determined from the results given in

Appendix A and published data on the performance of the codes for the binary

memoryless channel.

i il-
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Table 1. Bit error probability for nonselective Rayleigh

fading and specular multipath.

a) K 1 10 (K' 5), q - 100, and Nb = 10

I/N0 (dB) PL PG PA PU

6 0.161 0.175 0.182 0.199
8 0.118 0.131 0.137 0.156

10 0.085 0.096 0.102 0.123
12 0.060 0.071 0.076 0.098
15 0.036 0.046 0.051 0.074
20 0.018 0.028 0.032 0.056

0.009 0.019 0.023 0.047

b) K - 20 (K' 10), q = 100, and N = 10

IN 0 (dB) PL Pc PA PU

6 0.153 0.187 0.193 0.230
8 0.115 0.145 0.151 0.192

10 0.085 0.113 0.118 0.162
12 0.063 0.089 0.093 0.140
15 0.042 0.066 0.069 0.119
20 0.025 0.049 0.052" 0.103

0.018 0.041 0.043 0.095

c) K -50 (K' =25), q 250, and Nb 0

I/NO (dB) PL PG PA PU

6 0.157 0.188 0.191 0.227
8 0.119 0.147 0.149 0.189
10 0.088 0.114 0.116 0.158
12 0.066 0.090 0.091 0.136
15 0.044 0.067 0.068 0.114
20 0.028 0.050 0.050 0.098

0.020 0.043 0.041 0.090

Table 2. Bit error probabilities for uncoded and coded SFH
systems with nonselective Rayleigh fading.
(K - 15, q -1000, and Nb -40)

I/N 0 (dB) PA eb

14 4.0 x10-2  .lX10-1

16 2.7 x 10- 2  . ix 10 -3

18 1.9 x 10 1.7 X 10_
20 1.3 X 10-2  4.OX 10 15

w III I I [ Ik
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For a system without full interleaving the bit errors are not indepen-

dent and thus the bit error probability does not completely describe the

channel performance. However, we have evaluated the performance of certain

Reed-Solomon codes with partial interleaving, and typical results are given

in Table 2. The approximation PA to the probability of error for an uncoded

system is compared with the bit error probability Pb for a system which uses

a (255,127) Reed-Solomon code with partial interleaving. Notice that for

values of I/N0 greater than 18 dB, the coded system gives several orders

of magnitude improvement in the bit error rate. Further work on the perfor-

mance of coded SFH spread-spectrum systems is in progress (primarily under

other sponsorship).

The data in Table 2 gives a comparison between the performance of uncoded

and Reed-Solomon coded systems. Another interesting comparison is the perfor-

mance of a Reed-Solomon coded SFH system for two different sets of assumptions

on the frequency hopping and interleaving: (i) no frequency hopping and no

interleaving vs. (ii) frequency hopping with interleaving of the code symbols.

The channel model that we consider for this comparison is the very slow,

nonselective Rayleigh fading channel. In case (i) we assume that the instan-

taneous power in the received signal is constant for the duration of the code

word, but in case (ii) the instantaneous power is constant for the duration

of a code symbol but (because of hopping and interleaving) the power levels

for different symbols in the same code word are independent. In Table 3

numerical values for the block error probability are presented for the (31,15)

and (255,127) Reed-Solomon codes. The probabilities PM and P ii) are the

block error probabilities for cases (i) and (ii), respectively. The data

is for a system with only one transmitter (K -1) in order to isolate the

effects of fading from the effects of multiple-access interference. ,F
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Table 3. Block error probabilities for a coded SFH
system with nonselective Rayleigh fading.

a) (31,15) Reed Solomon code

P(i) e(ii)
/N0 (dB) E

20 8.29X 10- 2  8.44 x 10- 5

22 5.31 x 1o-2 2.50 x 10-

24 3.39 x 10- 2  5.92 x 10 -8

26 2.15 X 10- 2  1.21 x 10- _

30 8.63 X l - 
3  3.97 X 10- 1

b) (255,127) Reed Solomon code

&N0 (d)PE PE

15 2.85 x 8.86 X 10-2
16 2.34 X 10 1.50 X 10-3

17 1. 90 X 10-1 3.52 X 10-6

18 1.55 X 10-1 1.53 X 10-9

19 1. 25 X 10_ 1. 65 X 10- 1 3

20 1.01x 10 5.62 X 10 - 1 8
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A significant area of progress in the random-access area under this

contract has been the design and analysis of retransmission control poli-

cies for a random-access broadcast channel [51-[71, [9] . The policies can

be implemented in a distributed fashion. Analysis of delay and throughput

is provided in these papers using the concept of local Poisson approxima-

tion which is introduced in these papers.

Versions of the recursive retransmission control policies which are

relatively insensitive to the traffic statistics, and modifications which

reduce feedback information requirements are also reported in [5].

It is proven in [71 that the retransmission policies in [51 provide

-i
stable throughput at rates of up to e packets per slot. Moreover, a

general methodology for proving such stability results is provided in [71

and the methods are also applied in [7] to prove a strong stability property

of G/GI queues which is of general interest for queueing network studies.

Even though the papers [51-[71, [9] do not deal explicitly with a

spread-spectrum system, they were developed for spread-spectrum applica-

tions because these papers assume that channel feedback information is very

limited, which is characteristic of spread-spectrum systems. Indeed, in

the appendices of this report the traffic intensity vs. packet error prob-

ability tradeoff (Appendix B) and a possible implementation of recursive

retransmission procedures as in [51 (Appendix C) are each given in the

context of a FR-system such as the Navy's intra-task-force communications

network.

In Appendix D some results from [91 are summarized. In this paper

the delay/throughput tradeoff of a random-access system is studied under

the assumption of a very limited amount of feedback. It is found that

'1| i l i i
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there is a potential for instabilities if the feedback information is

insufficient.

In [81 we developed a numerical method for finding the invariant

distribution for a class of Markov processes. The method is useful for

performance evaluation of certain random access strategies, as shown in

1101. In Appendix E the method of [8] is outlined and some of the results

from 10] are summarized.
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I. INTRODUCTION

Several communications systems currently being developed have the

following conon features. Frequency-hopped spread-spectrum modulation is

employed with a hopping rate not greater than the data rate. Multiple-access

capability is required, because with high probability two or more terminals

will be transmitting simultaneously. During transmission the spread-spectrum

signals encounter severe fading, which causes reduced signal strength and may

produce intersymbol interference or other dispersive effects. These systems

are described in current terminology as slow-frequency-hopped (SFH) spread-

spectrum multiple-access (SSMA) communications systems with fading channels.

In this paper we present bounds and approximations for the average

probability of error for SFH/SSMA communications over fading channels. Two

important classes of fading models are considered: the class of nonselective

Rician fading channels--which includes the additive white Gaussian noise

channel and the nonselective Rayleigh fading channel as special cases--and the

selective wide-sense-stationary uncorrelated-scattering fading channel. The

data modulation is binary frequency-shift keying (FSK), but many of the results

apply to differential phase-shift-keying (DPSK) as well. Noncoherent demodula-

tion of the data is employed, partly because we do not require coherent frequency

hopping and dehopping. The communications network is assumed to be asynchronous;

that is, a given terminal makes no attempt to coordinate its transmissions with

those of other terminals. This may be due to the lack of an accurate timing

reference or because of the variation in propagation times among the different

communication paths in the network. The point here is that even if the trans-

mitters have a common clock they cannot adjust their transmission times to

provide coordinated arrival times at all of the receivers in the network.
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In the analysis of SFH/SSMA systems there are two approaches to the

modeling of the frequency hopping patterns: general random-process models may

be employed or specific (deterministic) sets of hopping patterns may be con-

sidered. The random-process models are often used in an attempt to match

certain characteristics of extremely complex hopping patterns which have very

long periods. Also random-process models serve as substitutes for deterministic

models when the communications engineer is given little or no information about

the structure of the hopping patterns to be used in the system. Both random

patterns and a special class of deterministic patterns (based on Reed-Solomon

codes) are considered in this paper.

The results obtained in this paper are bounds and approximations for the

bit error probability. These results are useful for both uncoded FH/SSMA

systems and fully-interleaved coded FH/SSMA systems. For coded systems which

employ random-error-correcting codes, full interleaving is usually necessary for

satisfactory performance. We have also obtained results (similar to those pre-

sented in Section III) on the probability of error for FH/SSMA systems which

employ certain burst-error-correcting codes and "partial interleaving", but this

topic is beyond the scope of the present paper.

A brief outline of the paper is as follows. The model for the SFH/SSMA

system is presented in Section II where our models for the various subsystems

and signals are described. The effect of nonselective fading on the probability

of error in a SFH/SSMA system is considered in Section III. A more precise

analysis is given in Section IV for the special case in which the channel

exhibits nonselective Rayleigh fading. Finally, selective fading is considered

in Section V.



!3

II. SYSTEM MODEL

The transmitter for the slow-frequency-hopped spread-spectrum signal

is shown in Figure 1. There are K such transmitters in the spread-spectrum

-multiple-access system. The k-th data signal bk(t) is a sequence of

positive and negative rectangular pulses of duration T. The amplitude of

the A-th pulse for the k-th signal is denoted by b(k) (i.e., bk(t) -b ( k )

for AT S t < (A+l)T), and b(k) is either +1 or -1 for each k and A. The

data signal bk(t) is the input to an FSK modulator, and the corresponding

output is

ck(t) - cos2r [f c +bk(t)A]t + ek(t)) (1)

where A is one-half the spacing between the two FSK tones. The signal

Sk(t) is the phase signal introduced by the FSK modulator; that is, if

b(k) = m then 9(t) = k for AT 9 t < (A+l)T where 9k m is the phase ofI k~t =k,mkm

the tone at frequency fc + mA for m - +1 or m = -1.

The FSK signal is then frequency-hopped according to the k-th hopping
pattern f(t) which is derived from a sequence (f**) .,f(k) f(k) f(k)

a . 1 , 0 , 1

according to

fk (t) (k)
fk(t) - fj, JTh S t < (j+l)Th. (2)

The parameter Th is the time between hops (also called the dwell time).

For slow-frequency-hopping Th is an integer multiple of T. The frequencies

f(k) are all from the set S - (vn: 1 £ n • q) which is ordered such that

Vn < Vn+ 1 for each n. Let A' be the inimm spacing between the frequencies

in the set S, and let N, - Th/T be the number of data bits per hop.

The band-pass filter shown in Figure 1 removes unwanted frequency

components present at the output of the multiplier. The signal at the

. . . - - -I I -I . .. . ... .. . .
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output of the filter is

sk(t) = '2 cos[2 1Tfk(t)t + ck(t), (3)

where

fk (t )  f c + bk(t)A + fk(t) (4)

and

-k(t) = k(t) + ak(t). (5)

The signal a k(t) represents the phase shifts introduced by the frequency

hopper as it switches from one frequency to another. Accordingly, ok(t)

is constant on the time intervals that fk(t) is constant. Let (k)

denote the value of ok(t) on the interval [JTh,(J+l)Th).

The quantity P that appears in (3) is the power of the k-th signal

at the receiver in the absence of fading. In order to account for fading,

we will multiply P by a suitable factor to obtain the average power in

the received signal. For simplicity we have assumed that the signals

sk(t) all have the same power. However, as we will point out later, we

obtain error probability bounds that are valid even if the power levels

are not equal.

Since we are considering an asynchronous multiple-access system, we

allow an arbitrary time delay -k for the k-th communication link (lk:S K).

Thus the received signals are Sk(t-rk), 1 S k 9 K. For the random hopping

patterns that will be considered in subsequent sections, it is sufficient

to consider time delays modulo Th. In order to allow for the possibility

of deterministic periodic hopping patterns, we consider time delays modulo

NTh where N is the period of the patterns for deterministic hopping

patterns or N -1 for random hopping patterns. Thus we may restrict

! '_



attention to time delays in the range 0 T k < NTh" Similarly we are

only concerned with phase angles modulo 2n, so we may restrict attention

to phase angles in the interval (0,21].

The analysis presented in this paper does not account for adjacent

channel interference in the frequency-hopping system or for interference

between the two FSK tones of a given signal. Instead we are primarily

concerned with multiple-access interference and the effects of fading such

as intersymbol interference and reduced signal strength. In order to

focus on multiple-access interference and fading, we made certain simpli-

fying assumptions concerning the frequency spacings A and A'. It is enough

for our purposes to have

A' >> A + T "  (6a)

and

A >> T"-1 (6 b)

However, it is possible to relax these conditions somewhat, expecially for

nonselective fading. For example if the fading is nonselective then it is

sufficient to replace the constraint A >> T " by the condition A - m/2T

positive integer m (the case m -1 is of greatest interest). In the

absence of time-selective fading our results are valid if A' is about

3(A + T 1) or larger, and they are likely to be fairly good approximations

even if A' f 2(A + T 1). However, frequency dispersion can expand the

signal bandwidths so that A' >> A + T"l is needed for time-selective

fading.

Under our assumptions, the frequency band that contains the signals

sk(t) is approximately the band from fc + v, - A to fc + v + A. The

center of this band is at frequency fV - f + J(V - IV The (one-sided)
c c q l h oesdd

.r

L III [ III I" Il L _. L ' . . I "
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bandwidth W is approximately v - V + 2A. Under our assumptionsq 1

W f V - V 1 (q-l)A'.q 1

In the absence of fading and noise the received signal is given by

K
s(t) =E S k(t -,rk). (7)

k=l

We focus our attention on the receiver for the i-th signal, and in doing

so we may select the time reference such that T- 0. The variables k

are then delays (modulo NTh) relative to this time reference.

The receiver for the i-th signal is shown in Figure 2. The received

signal I(t), which is a faded version of s(t), is the input to the first

band-pass filter. This filter has center frequency approximately f' and
c

bandwidth approximately W so i(t) is passed without distortion. This

filter is followed by the i-th dehopper which is synchronized in frequency

and time to the i-th frequency-hopping signal fi(t). The dehopper

introduces a phase signal 8i(t) which is analogous to the phase signal

Si(t) introduced by the frequency hopper. The phase signal 8i(t) is

constant during the time intervals between hops (i.e., when fi(t) is

constant). The constant value of i(t) for JTh S t < (j+l)Th is denoted by

ji).

The time delays, phase angles, and data symbols are modeled as

mutually independent random variables each of which is uniformly distributed

on the appropriate set (cf. [4] or (6]). The random time delays are the

random variables rk" The random phase angles that are of primary interest

aree (k) an W() Ar kin'0 and An important feature of our model for asynchronous

spread-spectrum multiple-access systems is that addition of phase angles

is modulo-2n addition. This feature is critical to our assertions concerning

. , IIII I IIIAt
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the distributions and the statistical independence of the phase angles (the

basis for these assertions is given on pp. 159-160 of [6]).

The output of the dehopper is then passed through a band-pass filter

which is designed to remove certain unwanted signals such as the double-

frequency components of the i-th signal itself, the sum and difference

frequency components due to the other K-1 signals (except, of course, those

that happen to be at the same frequency as the i-th signal), and the

thermal noise that is outside the frequency band occupied by the i-th

signal. The bandwidth B of this band-pass filter is less than A' but

usually larger than 2(A + T'1). if (A + T «1) << B < A' then the thermal

noise present at the output of the band-pass filter which follows the

dehopper has a bandwidth larger than that of the FSK demodulator. This

simplifies the analysis of the demodulator.

As shown in Figure 2 the FSK demodulator has two branches. Each branch

-2forms a statistic R where m=1 corresponds to the upper branch and m--l

corresponds to the lower branch. Each of these two branches has two

components. In the in-phase component the signal is multiplied by

cos[2rr(fc + mA)t], and the quadrature component it is multiplied byCI
sin[2rr(f c + mA)t].

Consider the reception of the data bit b(i). The outputs of the

in-phase components of the two branches are given by

(A+I)T

z I rd (t)cos [2 n(fc +mA)tldt (8)

for m - + 1, where rd(t) is the output of the band-pass filter which

follows the i-th dehopper (i.e., rd(t) is the input to the i-th FSK

demodulator). Notice that in general Zci depends on both I and i.
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However, if the random hopping patterns are stationary and identically

distributed and the fading process is stationary and not frequency

selective, then the distribution of the random variable Z will not depend

on either L or i. In case the hopping patterns are deterministic or the

fading is frequercy selective then we provide upper bounds on the

probability of error which are independent of L and i. The outputs of

the quadrature components of the two branches are denoted by Z for

m + 1. The random variables Zsm which are defined by (8) with

cos[.] replaced by sin[-], have the same properties as Z .
cm

I.
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IIII. PERFORMANCE OF FH/SSMA SYSTEM WITH NONSELECTIVE FADING

The channels considered in this section are the nonselective slow-

fading channels. For the frequency-hopped spread-spectrum system described

in the previous section this means that the signal at the input to the

first band-pass filter in the i-th receiver (see Figure 2) is

K
r(t) - n(t) + E yk(t-Tk), (9)

k=l

where for AT : t < (I+I)T the signal Yk(t) is given by

k(t) J5- diAe cos[(2kTR t~~)~k1 (10)

The thermal noise n(t) is white Gaussian noise with spectral density

1
-N0 . Notice from comparisons of (9)and (10) with (7) and (3), respectively,

that yk(t) is a faded version of Sk(t) and,in the absence of noise,r(t) isK

*(t) =Z Zkl Yk(t "Tk) which is a faded version of s(t).

The amplitude of the fading signal Yk(t) during the time interval

AT 5 t < (1+i)T is represented by a nonnegative random variable A(k) and(k)d £

the phase shift due to the fading is denoted by 0(k). In this section the

only assumption that we make concerning the signal amplitudes is that they

are constant during the data bit interval. The sequence of amplitudes

(k) (A)(k) A(k)
(AA -1A , A0 A ... may be any stationary random sequence.

In particular we place no restrictions on the statistical dependence of

amplitudes in different data bit intervals. Consider the set

(A(k) :JNb0  A < (J+l)Nb) of amplitudes for the data bits that are

transmitted during the J-th hopping interval [JTh, (J+l)Th). This interval

contains the data bits b (k)conain th dta itsbA for JN. S A < (i+l)Nb. Among the cases of
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interest are the two extreme cases (i) A -k ) . A( k ) for all A and m in the
I in(k) an ( k ) aeidpneti

same hopping interval and (ii) A) and Am are independent if A m

but A and m are in the same hopping interval. Case (i) corresponds a

system with no interleaving and a channel with slow fading relative to the

hopping rate. An example of case (ii) arises in a system which is fully

interleaved (e.g. if a random-error-correcting code is to be employed).

Although these are the two specific cases of greatest interest, there is

no need to restrict attention to such special cases in this section.

Similarly, we impose no restrictions on the phase sequence (k));ll

that is required is a constant value for the phase during the data bit

intervals. Notice from (l)-(5) that for IT ! t < (A+l)T the phase of the

signal in (10) is given by

( k) (k)~m+  + (k)ll

A ek,inm

where j is the integer part of I/Nb. Under quite general conditions the

phase 8(k) is uniformly distributed on [0,21T] because the addition in (11)
a

is modulo-2n. For example, it is enough to assume that one of the phase

angles which appears on the right-hand side of (11) is uniformly distributed

and that they are mutually independent (see pp. 159-160 of [6] for the

rationale for this statement).

There are two different phenomena which contributed to errors in the

system under consideration. First, even in the absence of noise and fading,

errors may occur in a frequency-hopped spread-spectrum multiple-access

system when a signal is hopped to a frequency slot that is occupied by

another signal. Whenever two different signals simultaneously occupy one

frequency slot we say a hit occurs. Second, even in the absence of hits,

errors may occur due to the fading and additive noise. The first step in
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analyzing the overall probability of error is to evaluate the probability

of a hit for various types of hopping patterns.

A. robability of a Hit

Consider as before the i-th receiver during reception of the 1-th

data bit. For a nonselective fading channel we say that a hit from the

k-th signal occurs during the 1-th data bit if

fk(t' k) - fi(t) (12)

for at least one value of t in the L-th data bit interval [AT,(L-+l)T).

As pointed out in Section I1, we can let N = 1 in considering stationary

random hopping patterns. It follows that the probability '(k) of a hit

from the k-th signal during the 1-th data bit interval does not depend

on A for such patterns. If the K hopping patterns { (f(k)) :1 9 k!9 KS

are also mutually independent and identically distributed then-- (k) does

not depend on k either, and hence we denote it by 9 for such patterns,

We first consider two different models for stationary random hopping

patterns and give the value of V for each case.

Suppose the random process (f(k)) is a stationary Markov process with

transition probabilities given by

p(f(k) . v (k) V - (q-l) "  (13)

j+l n j r

for 1 S n! q, 1 s r A q, and n # r. It follows that for these patterns

p f (k) (k) 0 (14)"J+l " i)I

and hence

| °
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-(1 + ) . (15)q N b

Because of (13) the process is a random process with first-order
3h

distribution given by

p(k) . n -1 n
P(f ( ) nq , 19n q. (16)

j n

If instead of (13) we consider random hopping patterns for which f(k)J+l

is independent of f(k) and the distribution of f is given by (16) for
Sis

each J, then (14) should be replaced by

P(f(k) f(k)) q , (17)
j+l j = -

and thus the probability of a hit is

o- I + L(l- 1)l• (18)
q Nb q

Notice that

-9 j (1 + 1 (19)
q Nb(9

and if q is large then

1 (l +1 (20)

(cf. equation (15)). Thus for large q these memoryless hopping patterns

give approximately the same probability of a hit as the first-order Markov

patterns.

' t!
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In general for a set of deterministic hopping patterns the probability

V(k) depends on both k and L. One set of deterministic hopping patterns that

has very good properties is derived from a Reed-Solomon code, so we refer to

it as a set of Reed-Solomon (RS) patterns [7]. Given a prime number q of

frequency slots, the particular set of RS patterns of interest here consists

of N = q-1 sequences of period N (of course we can always choose a subset if

fewer patterns are needed). Each sequence is nonrepeating;

that is, for each sequence (f ), 
8 (fjpfn) a 0 for n J and 0-- n< N-i,

where

1u v8(u,v) . 1 u

0 u 0 v (21)

The property of RS patterns that is of primary importance here is that for

any two patterns (f(k)) and (f(i))

N-i (k) M
n 8 (f nk9fji))5 1 (22)
n-O

for each J. Property (22) is actually valid for any set of nonrepeating

patterns.

Since Tk is uniform on [0,NTh] for k # i, then it follows from (22) that

() Th + T 1 + 1 (23)

1 Nh N N'bq -1l Nb

Actually (22) implies the stronger statement that either (k) = 0 or
(k)

4 9 . Since the number of frequency slots q is larger than the

period N - q-l, then it is possible to choose the hopping pattern (f (k)

I. such that P ( k )  0 for Nb different values of I in the range O< <- NNbL. b
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Notice that for large q

~9 (1+ (24)
q Nb

is a good approximation for the upper bound (cf. (15) and (20)).

Of primary interest for our subsequent analysis is the probability

of one or more hits from the K-i signals (corresponding to k 0 i) during

the A-th data bit interval. For stationary random patterns 9 does not
A

depend on I so we denote it by i. If the patterns are also mutually

independent and identically distributed then

S 1 -I-)K-I (25)

where 9 is the probability of a hit from a given signal. For the first-order

Markov patterns (25) and (15) imply

C 1+ j_)) K . (26)
q Nb

If the patterns are sequences of independent random variables (i.e.

memoryless patterns) satisfying (16) then

-1 -l 1 _.I Kq (27)

Next we consider the probability A of one or more hits in the A-th

data bit interval for deterministic patterns. Since the random variables

Sk, k 0 i, are mutually independent, then for any deterministic hopping

patterns

nK 1 (k),

k- -A 
(28)

i.0

IRk-



15

For RS patterns (23) implies

'91 :5 K-1 1 1(1 1-)K-1I29

b

where the symbol 0 is used to denote an upper bound. Notice from (27) and

(29) that for large q

.11-+1_b) K-1 (30)
q Nb

for the sequences of independent random elements and the RS sequences.

Notice from (26) that the expression given in (30) is the exact value of 9

for the first-order Markov patterns.

B. Bounds and Approximations for the Probability of Error

For a nonselective fading channel the bit error probability Pe,A in

a slow-frequency-hopped spread-spectrum multiple-access communications system

can be written as

Pe,A P0 (l1 ) + PlA 9 A (31)

where P is the conditional probability of error for the A-th bit given that
0

there are no hits and P , is the conditional probability of error for the

A-th data bit given there is at least one hit. Notice that P0 does not

depend on A. In general Pl, depends on A but, as will be seen from the

numerical results, it is sufficient for many purposes to use the bounds

0 P, < 1 "

- l~t
:1

1.
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Recall that for stationary random hopping patterns P does not depend

on I (and hence it is denoted by V). For RS patterns A depends on I but its

upper bound given by (29) does not. Hence for all of these patterns we

have the lower bound

e, P(a "9) (32)

and the upper bound

Pe,A 5 PU PL + =P 0 
+ ( -"PO) (33)

where 0 is given by (26), (27), or (29), depending on which type of hopping

patterns are employed. The lower bound is the same as we previously presented

in (51, but the upper bound of (33) is a slight improvement of the upper

bound presented in (5].

It is tempting to use P e, e P0 in place of (32), and we certainly

believe this tighter lower bound to be valid for independent time delays,

data streams, and hopping patterns. Under these conditions it is

intuitively clear that multiple-access interference cannot decrease the

average probability of error. However, the lower bound of (32) has the

advantage that it holds under more general conditions (such as for dependent

time delays, data streams, and hopping patterns).

The bounds given in (32) and (33) are valid even if the power levels are

not the same for the various signals or the hopping patterns are statistically

dependent. As might be expected, the imposition of additional restrictions

on the system leads to more precise results. In Section IV we present such

results for a more restrictive channel model. However, even with the full

generality of the nonselective fading channel model considered in this

section, we can improve the lower bound and obtain a useful approximation

if we consider equal power signals and add certain constraints on the

4Ai
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hopping patterns and the binary data streams. The hopping patterns are

assumed to be stationary, mutually independent, identically distributed random

patterns, and the data sequences are stationary, memoryless, independent

random sequences with distribution given by P(b (k)=m)= for m=+1 and m=-1.
n

The lower bound can be improved for such systems by providing a nonzero

lower bound for the term P 1,A of (31). One such bound is obtained as follows.

Consider the conditional probability of error in the A-th data bit given a

"full" hit from the k-th signal (i.e., given that (12) holds for all t in

[AT,(L+l)T)) and given the k-th signal transmits -b (i) for the two consecutive

bit intervals of interest. This conditional probability of error is equal to .

The conditional probability of a "full" hit (given a hit has occurred) is not

smaller than (Nb-l)/(Nb +1), and the probability of two consecutive transmissions

of a particular tone is . Finally, we use the fact that (25) implies

A> (K-),9(1 -,)K-2 ,

which is just the statement that the probability of one or more hits is not less

than the probability of exactly one hit. From the above we conclude that

P (NblI) K-2

I, > A (Nb+l) (K-1)9 (1 -

so that the improved lower bound is

k a (Nb-l)
Pe,A L PL + 8(Nb+l)(Kl( ")K' 2  (34)

We use tilde () to denote bounds and approximations which are valid for the

restricted class of systems only (i.e., equal power signals, memoryless

independent data sequences, independent hopping patterns).

An approximation which is valid under the same conditions is
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P e,1 A PL + k (k+P 0 )(K-I)(1'_)K-2 (35)

This approximation is very accurate whenever q/K is large because it is

based on the assumption that the probability of a multiple hit (i.e. hits

from two or more signals in a given data bit interval) is negligibly small

in comparison to the probability of a hit from only one signal.

Comparisons of the bounds and the approximation are given in Table 1 for

various values of P0 K, q, and Nb. The hopping patterns are the first-order

Markov patterns for the data in Table 1, but in view of (30) the results

would not be significantly different for the other patterns described above.

C. The Nonselective Rician Fading Channel

The bounds and approximation given in (32)-(35) can be

applied to any particular nonselective fading channel by substituting the

appropriate expression for P0 in these results. In this section we consider

the*Rician nonselective fading model in which each transmitted signal results

in a received signal that is the sum of a nonfaded version of the trans-

mitted signal and a (nonselective) Rayleigh faded version of the transmitted

signal. The difference in the propagation times for these two components

is sufficiently small compared with the data bit duration T that the overall

channel is nonselective. This model is discussed in [9] where the nonfaded

component is called the fixed or specular component and the Rayleigh-faded

component is called the random or scatter component. In some applications

the nonfaded component arises from a direct path between the transmitter

and the faded component arises from a reflection.

AKJ



Table 1. Lower bounds, approximation, and upper bound
on the probability of error for a FH/SSMA
system.

a) K - 15, q = 1000, and Nb 10

P0 PL L A PU

0.100 0.098 0.100 0.103 0.106
0.050 0.049 0.051 0.053 0.057
0.030 0.030 0.031 0.034 0.037
0.020 0.020 0.021 0.024 0.027
0.010 0.010 0.011 0.014 0.017
0.005 0.005 0.006 0.009 0.013

b) K = 15, q 1 100, and Nb 5

P0 eL L A PU

0.100 0.084 0.096 0.128 0.162
0.050 0.042 0.054 0.081 0.120
0.030 0.025 0.037 0.063 0.103
0.020 0.017 0.029 0.054 0.095
0.010 0.008 0.020 0.045 0.086
0.005 0.004 0.016 0.041 0.082

c) K - 25, q - 250, and Nb 20

P0 PL PL PA PA

0.100 0.090 0.100 0.118 0.138
0.050 0.045 0.056 0.070 0.093
0.030 0.027 0.037 0.051 0.075
0.020 0.018 0.028 0.042 0.066
0.010 0.009 0.019 0.032 0.057
0.005 0.005 0.015 0.027 0.053

I,
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The amplitude S of the sum of the two components of the received signal

is a random variable with a Rician distribution (see (8] or (91). Since we

are interested in the conditional probability of error given there are no

hits, we can assume in all that follows that only the components of the

i-th signal are present at the i-th receiver (during the data bit interval

under consideration). Let p be the normalized bit energy to noise density

ratio, so that S 2p is the actual received energy to noise density ratio.

Hence for noncoherent FSK the probability of error given S - a is exp(-a 2p).

For the Rician channel the density function f for the amplitude S is

fs (a) = (a/a 2 )expE- (a 2 +a 2 )/a 2 )1 0 ( a/a 2 ) (36)
2

for a > 0, where a represents the strength of the nonfaded component,

2a 2 is the expected value of the strength of the faded component, and 10

is the zero-th order modified Bessel function. The average probability of

error for noncoherent FSK is [9]

P0  f k exp(- a p) fs(a) da
0

expc-k 2 0/(a2 + 1)) (37)

2 (a2p +i)

If j denotes the average energy per bit in the received signal then

A A aN -.(at2+a 42)P (38)

Let y2 denote the ratio of the power in the faded component to the

power in the unfaded component; that is, y2 . 2a2/ 2

Corresponding results for binary DPSK are obtained by replacing p
by 2p in (37).

Ii
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Then we can write

(Y2 + 1) expt-A/[y2A + 2 (y2 + 1) ]) (39)0 y2A+2(y2 +1)

Two limiting cases of interest are a2 0 and 2 2fi 0. If 2 = 0 (y2 = 0)

then there is no faded component, and the channel is just an additive white
2

Gaussian noise channel. In this case A = a 2 p, and the probability of error

reduces to

P 0 = expt-k A) (40)

2 2If 2 . 0 the channel is a nonselective Rayleigh fading channel, A = 2a P,

and the probability of error is

1
Po A+2 (41)

An examination of (39) as a function of y2 shows that for y2 1 10 the

probability of error for Rician fading is nearly the same as for Rayleigh

fading. For example, if A is 12 dB then P0 is 1.81 x 10- 2 for y2 _ 0,

4.41 x 10 - 2 for y = 0.1, 4.53 x 10- 2 for y2 . 1.0, and 5.58 x 10-2 for

2 2 - 2y . 10.0. The value of P0 for Rayleigh fading (y ) is 5.60 x 10

In order to apply (36)-(41) to the slow-frequency-hopped spread-spectrum

multiple-access system, consider first the expressions (9) and (10) for the

received signal. The amplitudes A (k) are random variables with a density

function of the form given in (36). In general the parameters a and a may

depend on i, in which case A and y also depend on i. The probability P0

then depends on i and is given by (37) with a and a replaced by a£ and i

or by (39) with y and A replaced by yi and Ai. It follows from (9) and (10)

that the parameter p is given by p - PT/N 0.
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The next step is to substitute for P0 in (32)-(35) using the expressions

(37) or (39). If P0 depends on i the bounds of (32) and (33) are valid, but

of course they will also depend on i. Notice that if a and a depend on i,

then the average power in the received signal also depends on i. That is,

the signals are not required to have equal power. The approximation given

in (35) is also valid even if P0 depends on i, provided that ak ft i and

ak o ai for all k.

In Figure 3 the approximation PA' which is given by (35) with P0 replaced

by the expression in (39), is shown as a function of A = 3/N0 for various values

2
of y . For the data presented in Figure 3, the values of e and a (and

hence y and A) do not depend on i. Additional numerical data can be obtained

from Table 1 by evaluating P0 from (37) or (39). Notice that for Rayleigh

fading with 8/N0 less than 20 dB the value of P0 is less than 0.01. From Table 1

we see that for P 0 0.01, the value of PU is always less than 2PA and the value

of PA is always less than 2PL for the values of K, q, and Nb considered in

Table 1. For K = 15, q = 1000, and Nb = 10 we see that for P0 5 0.01, we

always have PA S 1.2 PL and PU 1.25 PA Thus, for Rayleigh fading or

Rician fading with y2 a , the bounds and approximations given in this section

are sufficiently accurate for the design of slow-frequency-hopped spread-

spectrum multiple-access systems. Further evidence of this is given in the

next section.
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IV. NONSELECTIVE RAYLEIGH FADING

In this section we present a more exact analysis of the effects of

multiple-access interference and nonselective fading for the special case

in which the fading is Rayleigh. This analysis provides a more accurate

approximation and a tighter upper bound for the probability of error than

is obtained by specializing the results of Section III to Rayleigh fading.

The system and channel models are as presented in Section III, and the

received signal is as given in (9) and (10).

Since we are considering only Rayleigh fading in the present section, the

random amplitudes A (k) have a Rayleigh distribution. The density function

for A(k )- is given by (36) with a - 0 and a = a In general the second

A 2
moments p 2 k are different for different signals. For the analysis

presented in this section we assume that the fading for different signals

is statistically independent. Stated precisely, the requirement is that

A(1 ) A (2 )  A(K) are mutually independent for any choice of LlL 2 , .... 9K"

The starting point for the analysis of the receiver is (8). Since in

practice fc >> T _ for a spread-spectrum system, the high frequency terms

in the integrand of (8) may be ignored. The output of the integration at

the sampling instant is then given by

Z iD + (P/8)k T E I (k i ) + N (42)c'M c'M k~i c'm C'm

c~,m

The first term D is the component due to the signal si(t). If the

transmitted data bit is bi) for X + JNb+p thenxb
Dc~m  (P/)%Ti)8(b~i),M)cos[ei + i of M ) + 0 )M (43),I

Since the component is the output of the integrator in the absence of

multiple-access and channel noise, it is called the desired signal component. I



23

The altiple-access interference I(k 'i ) from the k-th signal depends
C M

upon the delay Tk" For convenience let £k Lk/ThJ and nk - L(rk - LkTh)/TJ,

where LuJ denotes the integer part of the real number u. Then I(k,i) can
c'm

be expressed as

1(ki) = d('k)[A(()+l)e(kk' o* ' (k)(Ak,nk)l

I C'M d(I kE' ( l)'l(k'nk~os*'(Ak ) + A.(nk~e 2 (Ak, nk)cos *" 'k'~

(44)

for 0 nk < p. The following expressions define the various terms in (44).

First we have

d(A) = 8 (f(k) f(i)) (45)

for 0 - L < N. Second, if L(n) - (j -Ik)Nb+p-n then

e (An) - 8 (b(k) ,m)(T -ITh-nT]/T. (46)
1 L(n+l) k

and

"2(1,n)- 6 (b n(k) ,)((n+I)T-T k+ATh]/T .(47)
e2 (n) L(n)' (47

Finally, if b(k) ml a b (k) = m" then
L(n+l) L(n)

('(L,n) k ,+ k  ) - 2 Tf +' f (k)f]Tk+4 (k) (48)J- ~n " 2 m f~'+ (YJ A 01CJ-1 k "L(n+l)

and *"(A,n) is given by (48), with m' replaced by d' and L(n+l) replaced

by L(n). For p < nk < Nb equation (44) is replaced by

c'M d(Aek+l)( tA.(,,)el(1"knk)cos9 (Ak+l',nk) + A (k) e2 ()k, nk)cos*(Ak+lnk) ]

(49)

The only remaining case is nk - p for which we have

I(k€i) ((Jk+) ) ' 'I(k)e(k,)O"(kp
c,iM d(Ii+l)AG(l)el(tk ' p) °cos (Ajk+lp) + d(k.)AL(p) e2 (kdp)cos*"(A'p)

(50)
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A(k) . and 0(k) = 0 in the above expressions,

Notice that if we set (n) a L(n)

then we obtain expressions for the in-phase components of the desired signal

and the multiple-access interference for a system with an additive white

Gaussian noise channel.

The remaining component of Z is the component N which is due toc,m c,m

the channel noise process n(t). It is easy to show that N is a zero-meanc,m

Gaussian random variable with variance N0T/16.

The quadrature components are defined by expressions which are analogous

to (42)-(44). In fact Zs m and Ns' are defined in the same way as above, and

the only change that must be made in the definitions of D and I k ' i ) is
Sm sm

that cos(.) should be replaced by -sin(.) in (43), (44), (49) and (50).

We next consider the average probability of error where the average is

computed with respect to the phase angles, time delays, and data symbols.

We start by assuming that the transmitted data bit is b(i ) . +1 where

X = J Nb+p as before. Also the probabilities and expectations below are all

conditioned upon the data sequences (bA) and time delays T k For m - +1 or -1,

2 2let a and a be the variances of the in-phase and quadrature componentsCm sm

Z and Z respectively. Since, as we discuss below, these components are
c'm s'M

Gaussian random variables with equal variances, the probability of error is

given [8, p. 5871 by

2 (a2 +a2 (51Pe = °c,-I c , I c,- ) (1

for slow nonselective Rayleigh fading and noncoherent FSK detection. Under

the assumptions about the fading model that were made above, the desired

signal component De,1 is a zero-mean Gaussian random variable with variance

(PT 2/16)pi. Also notice that Dc,.1 - 0.
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In order to proceed further in the analysis of the multiple-access

interference, we need to consider the nature of the statistical dependence

between A (k) and A(k) and between l(k) and §(k) for A and £+1 in the sa
A £--l A 1+1

hopping interval. These are the random variables which describe the fading

during adjacent data bits. We consider the two extreme cases described in

Section III: (1) the fading is constant in the sense that A (k) .A(k) and
A +Il

0 (k) . 0(k) whenever A and 1+1 are in the same hopping interval and (ii) the

fading is independent for adjacent data bits in the same hopping interval.

Under our assumptions, the multiple-access interference component

Im(k,i) is a zero-mean Gaussian random variable with variance iki2m(ki). For

constant fading, as described by case (i) above, we have

* 2 (k'i) = d(£k)[el(£k +k)+e2 ( k'nk)] 2  (52)

for 0 <-- nk < p,

* 2 (k,i) = d(£,+l)[e ( k  ) ]
2 + d(£ ) [ e 2 £ n  

2  (53)

m 1 Aknkl k L2(Ak)l

for nk = p, and

a2 (k,i) - d(Ak+l)(el(tk,nk) + e2 (£kn,)] 2  (54)

for p < nk < Nb. For independent fading, as described by case (ii) above,

we have

2(k,i) - d(Ak)t[el(£k,nk)] 2 + [e2(A knk)]2  (55)

2for 0: < nk < p. If nk - p, am (k,i) is given by (53), and for p < nk < Nb

a2_(k,i)- d(£k+l)[[el(2k,n)] 2 + [e2(Ak,nl) 2] . (56)
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Because of the independence of the fading for different signals, the random

variables I(ki) are independent when conditioned on the data bits and time~C'M

delays. As a result

m2  
= 

2 /16)t(l,m) i + k wkm 2 (k,i)] + NoT/16 (57)C, m k m

By symmetry we see that a sm = a cm" Thus (51) can be written as

e= k2i 2 (58)e 1 + 2( ---NO)- 1+ E I ~[ 2 (k,) + 2 ( ~
k i

where P = &iPT is the energy per bit for the received signal (in the absence

of multiple-access interference).

In order to evaluate the average probability of error Pe we must average

the expression in (58) with respect to the time delays and data symbols. This

is of course a difficult computation since it involves the evaluation of K-I

dimensional integrals. However we can obtain an approximation P and an upper
FA

bound PU which are relatively easy to compute. This is accomplished by

observing that Pe depends on Tk only through tk, Ak and nk where

t- (Tk- AkTh- nkT)/T. We can thus obtain a discrete approximation to the

integral with respect to tk by approximating the uniform distribution on [0,1]

by the discrete distribution with probability mass J- at points

j 1,2j',. .. , (J-l)J"I and probability mass (2J) " at the end points 0 and 1.

We find that for the first-order Markov patterns and constant fading (case (i))

P[am(k,i) - ] . PJ 0 is O J-- J, (59)
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where the quantities p are defined completely by the fact that their sum

1 is l and

( (2Jq) 1(l+Nb'), J 1,2,..,J-l,

Pj (60)

(4Jq)-1 (+N ) (l4Nbq, 1 = J .

For independent fading (case (ii))

P~Cm(k,i) - J - . PJ , 0- 1J S J, (61a)

Pfom(ki) - [j2 + (J-j)2] 1 -] = qJ , 0 5 jJ 5 J, (61b)

where pj and qj are defined by

f (2Jq) 1(l+N;1b , j - 1,2,...,j-l

p j = (62a)

(2Jq) " , j J,

(2Jq) I(l-Nb), J 1,2,...,J/2-6qJ M (62b)I

(4Jq)' (I-N;), j J/2

and
J J/2

p0 -1 " pj - E q  (62c)

In (61) and (62) we assume J is an even integer.

An upper bound can be obtained as follows. The conditional probability

of error P given by (58) is not convex in tk (1 5 k!5 K, k 0 1). However

if we upper bound the sum of squares of (53) for case (i) or of (55), (53),

and (56) for case (ii) by the square of the sum, the upper bound on P.

e
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becomes a convex function of the tk's. We then obtain a discrete approximation

to the integral with respect to k as for P The upper bound P is the same

for cases (i) and (ii) and the distribution of m(k,i) is given by (59), where

the pj are defined by

I (4Jq)1 (l+Nb ) , j = 1,2,...,j-l

pj (63)

(l+J b)(4q)'(l+Nb'), j - j

A similar approximation and upper bound can be obtained for the sequences

of independent random elements.

Finally we note that in order that the approximation and bound presented

in this section be tight and computationally efficient we need to assume

that Pk = "i for all k # i. If this is not the case, we can still work with

= k but the approximation and the upper bound obtained above are
k

not expected to be very tight, so that it might be preferable to work with the

bounds suggested in Section III which are not affected by the different power

levels.

In Table 2 the approximation obtained in this section is compared with

the improved lower bound, the approximation, and the upper bound of Section

III.B for the first-order Markov hopping patterns and Pk"i for all k.

The approximation P A (for both cases (1) and (ii) and the bound PU

are evaluated for J - 4. It turns out that they are rather insensitive to

increases in J as long as i > 4. Values for PA are given in Table 2(a) for (i)

constant fading and (ii) independent fading. The notations PM and (ii)
A A

respectively, are used for these two cases. Independent-fading turns out to be

the most favorable case although the difference is less than ten percent. Also notice



Table 2. Bit error probability for nonselective Rayleigh fading.

a) K - 5, q - 100, and Nb = 10
!/N (dB) P (ii) (i) P P

0 L A A U A u

6 1.64 1.71 1.72 1.72 1.74 1.82 (Xl0-)

8 1.19 1.25 1.26 1.27 1.28 1.37 (Xl0-)
10 8.41 8.95 9.02 9.09 9.21 10.14 (X10)

12 5.80 6.29 6.36 6.44 6.54 7.52 (Xl0-)
15 3.28 3.73 3.81 3.90 3.97 5.01 (Xl0-)

20 1.37 1.78 1.87 1.97 2.02 3.10 (Xl0-)
0.44 0.83 0.92 1.02 1.06 2.16 (XlO-)

b) K = 10, q 1000, andN = 10
b

IN0 (dB) P PA PU

6 1.67 1.68 1.69 1.70 (X10-)

8 1.20 1.22 1.22 1.24 (XI0 -)

10 8 .35 8.51 8.54 8.74 (X 0 ,)

12 5.65 5.79 5.82 6.04 (X0-)

15 3.05 3.18 3.20 3.44 (X0-)

20 1.07 1.20 1.22 1.46 (X0-)

0.10 0.23 0.24 0.49 (XlO-)

c) K - 15, q 1 1000, and Nb = 10

IN0 (dB) PL P PA P

6 1.66 1.69 1.70 1.72 10-1

8 1.20 1.23 1.23 1.26 (Xl0-)
10 8.36 8.60 8.65 8.97 (X1O-)

12 5.67 5.90 5.94 6.28 (X10- 2 )
15 3.08 3.30 3.33 3.69 (x10-2 )
20 1.12 1.33 1.35 1.73 (X10-2 )

0.16 0.36 0.38 0.76 (XiO )
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that the bound PU (common for both cases) differs from PA of (i) or (ii) by

at most twenty percent; therefore, in Tables 2(b) and 2(c) we present data on

U only (not on PA). The purpose is comparison with PL' ?A' and PU" In

comparing P and PA we note that PA appears to be an upper bound for the

nonselective Rayleigh case. Also the results of Table 2(c) show that for

q 1000, K = 15, Nb = 10, and 8/N0 - 20 dB the results of the Table show that

PU S 1.17 PL, PA -5 1.3 PU and PU < 1.52 PU Similar observations can be made

for the data provided in Tables 2(a) and 2(b). As a final comment we point out

that since the approximations PA and the bound PU are expected to be very close

to the true probability of error, their favorable comparison with the simpler

bounds PL and PU and the approximation PA strongly suggests the use of the

latter for the design of SFH/SSMA systems.

Ii
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V. SELECTIVE FADING

In this section we consider a general wide-sense stationary uncorrelated-

scattering (WSSUS) fading channel. This model is described in detail in [1]

and [8, Ch. 9] and is employed in the analysis of direct-sequence SSMA

commiunications over fading channels in [4]. We assume that f )> qA', soc

that narrow band signal models can be employed. The input to the k-th channel

is sk(t -k) where

Sk(t) - Refxk(t)exp(j 2 TT fct) (64)

and

xk(t) - % exp(j (2 i[ (bk(t)& + fk(t) ]t + ek(t) +0k(t))). (65)

The corresponding output is yk(t -Tk) where

yk(t) - YOsk(t) +Reuk(t)exp(j2 tfct)] (66)

and

uk(t) - Yk f hk(tr)Xk(t -r)dr , (67)

so that the received signal for this channel is given by (9).

If y1 - I then there is a (non-faded) specular component present in the

output of the channel, and the channel is a kician fading channel (as in (41).
2 2

In this case Yk plays the same role as the parameter y of Section III. If

Y0 = 0 there is no specular component, and the channel is a Rayleigh fading

2channel. In this case Yk plays the same role as the parameter Pk of Section

IV.

II
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The fading process hk(t,r) (which can be thought of as the time-varying

impulse response of a lowpass filter) is a zero-mean complex Gaussian random

process with autocovariance

Ethk(tT)ht(s,a)] -pk(t s,T)6 (-r -a) , (68)

where 6(.) is the Dirac delta function and

L pk(O T)&r - 1

Two special cases of the model considered in [1 and (4] are the purely

time-selective and purely frequency-selective WSSUS fading channels (see

also [21 and [31).

In the present paper we consider a somewhat more general model which is

both time and frequency selective. This is a special doubly-dispersive model

that is characterized by

pk(t-s, ) rk(t-)gk(r) . (69)

If gk(T) a 8(T) the channel is not frequency selective. If rk( ) 1 it is

not time selective.

As usual ((l]-C41), some limitations are imposed on the selectivity

of the channel. First it is assumed that

gk(T) ow 0 for J-r I T, (70)

which is a constraint on the frequency selectivity of the channel that allows

us to restrict attention to the intersymbol interference from the two adjacent

A'
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data bits. This assumption can be relaxed, but the error probability

computations become mre difficult. The second assumption is that two

signals which are transmitted at different frequencies have non-overlapping

spectra at the receiver. This is primarily a limitation on the time

selectivity of the channel, but it also is related to the spacing A.

The analysis of the receiver follows that of Section IV, so many of the

details are omitted. The output of the in-phase component of each of the

two branches of the i-th receiver is

4 '^(ki)
Z C' =y(Dc +1 )+(P/8) T(yiFc + Z Y I~ C' ) +N . (71)

The terms D I and N are as in Section IV if we replace AM

by 1 and @ i) by 0. The terms F and L[k,i) are (normalized) fadedA c~mc,m

versions of the desired signal and the multiple-access interference due to

the k-th signal. These terms are defined for the X-th decision bit

(X - JNb+p) by

FC, = Re(FrM) (72)

and

I (k,i) Re ae (k,i) )  (73)
c,m

where

FM. T (X+ 1)T h hi(tT)-imM(tT)exp[j *i (t,T)ldTdt (74)
XT -

and

1 (kvi)= (T I hi T'M(tT +T)exp[ i(t'T +))]dTdt"

(75)

In (74) and (75) the functions hk,im and k,i are given by
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iik,i,m(t,T) 8[fk(t -T),fi(t)]8[bk(t -T),m] (76)

and

k,i (t,T) 2 n [fc + bk(t T)A+ fk(t -T)IT +ek(t - ) +ak(t -T) -81(t). (77)

The functions T i'i'm and *,i are denoted by 'i'm and ., respectively.

Notice that Fm is nonzero if and only if both fi(t -T) fi(t) and

bi(t-T) = m for some t and T (similarly for 1 (ki)). This is a result of
m

our assumption for the time-selectivity of the channel and the size of A.

In the analysis below, the expectations and probabilities are conditioned

on b (k) and Tk for 1-5 k S K. However, the error probabilities that are

obtained do not depend upon Tk or b(k )- for k # i. So in the last step we

only have to average over b(i)

A. WSSUS Rayleigh Fading Model (y0 - 0)

The bounds of (32)-(34) and the approximation of (35) are employed

except that fading must be accounted for in P0 and P. For yo = 0 and K 1,

Zc,m is the sum of two random variables ((P/8) T Fc'm and N Cm) of which

the first is conditionally Gaussian and the second is Gaussian. Furthermore,

it is not hard to see that ZC, 1 and Zc,-l are conditionally independent, and

so are Z s' and Zs,.l Since a c m =a s'M then [8, p. 587]

2 2 2 - (78)
Pe,O ' oc,.(1cl+ c,.

is the conditional probability of error given there are no hits where

Cm - (PT2/8)y Var[Fc,m) + NoT/16 (79)
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2
It is convenient to normalize a 2 and write (78) as

~l

Pe,0 = v- 1 (v 1 +v. 1 ) I  (80)

where v is given in terms of 2i PT by

v m - 2 Var(F., + (8/N0 )- 1  (81)

The expression for VarCFc,M] depends on the position of the data bit within

the interval [JTh,(J+l)Th). For the p-th bit of the j-th hop (X JNb+p) de

define 8m  8(l,m), 6' 6(b(i l,m), and 6 m' - (b , ). Let
v

Hi(v) = 2T 2 I0 (v -u)ri(u)du, (82)

and define
T

Fi gi ( T)Hi ( r)d , (83a)

T

F i  gi (T)Hi (T -T)dT, (83b)

and
= 2T T-T

T gi(T) fIf ri(t-s)dtds (83c)Gifi ' 0 0 0

The following expressions for Var(Fc'm) are derived in the Appendix.

First for p = 0 we find

VarCFc ]+6 q[)Fi + 26nF i + 26(M+6 q)Gii . (84)

For p - Nb -1 (84) is valid provided we replace 8 by 8'. Finally, for

0 < p < Nb- 1, the expression is

Var[Fcj 3 -[(6M'+8
'" ) + 26 + 2. ( + 8m)G i  (85)

c ~ ~ m i m Fi M6F ~ 8 ~ 8 )i
a.!

iL
L
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I
For the first-order Markov hopping patters and the RS hopping patterns the

quantity 6q that appears in (84) is identically 0. For the sequences of

independent random elements 6q is a random variable with P[6q = 1) = q-1 and

P[6 q0] . 1 - q-.

Notice that for 0 < p < Nb - 1 (i.e. for the internal bits of each

dwell interval), Var(FC in does not depend on the hopping pattern.

It turns out that the average probability of error for these bits

(0 < p < Nb- 1) is larger than that of the first and last bits (p= 0 and

p =Nb -). Thus we use (85), and not (84), in order to obtain an upper bound

on P0 which applies for all values of p. As a consequence of using (85), we

obtain a bound on P0 which does not depend on the hopping pattern.

In order to obtain the limiting error probability (as the channel becomes

nonselective) it suffices to let gi(T) = 6(r) and ri(u) = 1. We then have

Fi G = 0 and Fi= so that P0 is given by (41) with A -i7/N i 2p

Similarly, to obtain the irreducible error probability (as p -. 0) we simply

disregard the second term in the right-hand side of (81).

For the WSSUS Rayleigh fading model we say that a hit occurs from the

k-th signal whenever Tk, bk(t), and fk(t) are such that Var[c(ki)3 0.

The probability P of such a hit depends upon Nb and q. For the first-

order Markov hopping patterns we have

P 5 (l+-) . (86)

In deriving (86) we used the fact that for the selective fading model used

in this section, as many as 4 adjacent bits from the k-th signal may
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I
interfere with each bit of the i-th signal. The expressions (25) and

(32)-(35) apply with P replaced by Pu and P0 evaluated as explained above.

For memoryless hopping patterns the corresponding result is

P + (87)
u b q

Both bounds in (86) and (87) are tight for Nb Z 3. For the RS hopping

patterns the corresponding result is

_P _.L. (1+1) (88)

Notice that the bound in (88) is the same as in (23) which was obtained under

nonselective fading conditions. This is due to the fact that the RS hopping

patterns do not repeat within a period.

B. WSSUS Rician Fading Model (y0 - 1)

In this case the conditional error probability given there are no hits

is [8, p. 5871

2 2 2 -l 2 +O2 l(9

Pe, a 2(a +C2,.) 1exp[-(D 2, +D 2,)(Ca, +2 1 (89)
e,o c,-l c, c c s c c

Upon normalization, (89) reduces to

Pe,0 V-l(v + -V -l1 exp(-'Yi (v 
+ v-1) 

1] (90)

where vm is defined by

v = 2 VarF', +(l 2 2 -2 - (91)

8/N0 f (l+Y2)p, and Var(Fc m] is given by (82)-(85). Finally in order to

obtain P0 we have to average Pe,0 with respect to the data bits (b) b Xi-).

4Ai
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For Rician fading the hits from the k-th signal may occur from either

the direct-path component or the faded component. The probability of a hit

from the k-th signal due to the direct-path component is the same as for

nonselective Rayleigh fading (this was evaluated in Section III). The

probability of a hit due to the faded component is evaluated above (for

Rayleigh fading). The union bound provides simple upper bound on the

probability of a hit. This is given by

P _IM2 (1 + 2)(92)
u q Nb

for first-order Markov hopping patterns and

' .2- I [1 +NL (1. (93)-- u q N

for memoryless random hopping patterns. For RS hopping patterns P is

still bounded as in (88); that is,

P -- P' Pu (94)
u

By substituting for P in (32)-(35) and replacing P by P' in (25) we have0 u

lower bounds, an approximation and an upper bound on the average probability

of error.

In Tables 3 and 4 the approximation PA given in (35) is obtained for

purely frequency-selective Rayleigh and Rician fading channels, respectively.

The system parameters are K - 15, q - 1000, and Nb - 10. First-order Markov

hopping patterns are employed. The covariance function of the frequency-

selective channel is triangular, so that the rms multimath spread a defined N

by a 2  T f 72 g(T)dr is related to the parameter d of [31 by d - 2.22 a/T.

We let yk - y for all k. Then in Table 3,P A is given as a function of



Table 3. Bit error probability for Rayleigh frequency-selective fading

(K 15, q 1 1000, and Nb 1 0).

&IN0 (dB) -0.05T a-0.1T -0.15T a-0.2T

6 1.75 1.82 1.91 2.01 (X10-)

8 1.28 1.35 1.44 1.54 (xlO )

10 0.91 0.97 1.06 1.17 (X10 )

12 6.31 6.88 7.71 8.84 (xlO-)

15 3.63 4.13 4.94 6.08 (XI0- 2 )

20 1.59 2.04 2.82 3.95 (X102)
0.58 1.00 1.76 2.89 (X10 )

Table 4. Bit error probability for Rician frequency-selective fading

(K = 15, q 000, Nb - 10, and a 0.05T).

& 0 (dB) y2-. 1 72.. 5 y2.1 Y2.i0 y2.1000

6 0.98 1.42 1.60 1.77 1.78 (XlO_1)

8 0.49 0.94 1.13 1.30 1.31 (X1011

10 0.23 0.61 0.78 0.93 0.94 Cx102)

12 1.23 3.96 5.34 6.58 6.63 (XIO-2

15 0.86 2.26 3.14 3.94 3.97 (XlO_ )

20 0.82 1.24 1.58 1.92 1.94 (xlO_ 2)

0.81 0.83 0.86 0.93 0.94 (XlO )

4 I;

I !.

1..
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Y/N0 . (1+y )p for a - 0.05 T and for five different values of y2. Notice

that as y a the probability PA is not the same as the second column of

Table 3. Although P is the same in this limiting case, the fact that

Pu < (compare (86) to (92)) implies that the two cases give different

values of the bit error probability.

Finally we compare A for nonselective and frequency-selective Rayleigh

fading for K - 15, q - 1000, and Nb - 10, (first-order Markov hopping patterns

are employed). From Tables 2(c) and 3 we see that the probability of error

for the frequency-selective case is, for S/N 0 - 12 dB and a - 0.05, 1.1 times

that for nonselective fading, and it becomes 1.5 times the corresponding

probability for nonselective fading as a increases to 0.2 T. Similarly

for W/N0 - 20 dB the ratio of the two probabilities ranges from 1.2 for

a = 0.05 T to 2.9 for a - 0.2 T.

,i
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APPENDIX

In this appendix we develop the expressions for VarEFC,m3. As in [4]

we can write Var(FcM ) as

Var(Fcm = E[Re(F i 12 = k E[FF]* , (A-i)

where we used the fact that (1] Ethi(t,T)hi(s,a)1m 0. Upon substitution for

(74), (68) and (69) in (A-1) we find

2(X+l) (X+I))T

VarEFc,m] ST2 gi(T) XT f ) T ri(ts'im(tT) i'm(S'r)

expj[[*i(t,T) ,i (s,T)Idtdsd1 (A-2)

Notice that Ii'm (t,T)Tim (sT) 0 only for those t, s, and T for which the

following three conditions hold: fi(t-T) - fi(t), fi(s-T) - ft(s), and

bi(t -T) - bi(s -T) - m. But these three conditions imply ci(t -T) - ai(t),

ai(S-T) - i(s), ei(t -T) = i(s -T), respectively. Also =i(t) - ai(s) -

or i)M and 0i(t) = Pi(s) = 0jM for t and s in [XT,(X+l)T). Consequently,

4i(t,T) - *i(s,T) for these values of t, s, and T. As a result we may let

exp[j(*i(t,r) - *i(s,T)] 1I

in equation (A-2).

The next step is to write (A-2) as

p'1 N b-1

VarEF c m  E d(l £ Am(&,n) + Am(A,p) + d(L+l) E Am (A,n)1 , (A-3)
n=O n-p+1



7i A-2

i
where for n # p

iT
A M(9,n) - gi(T+£Th+nT)[Am(Z,n+l)F(T) + A (1,n)F(r) +

0
2A M(i, n+l)A M(X,n) G (T)] d, (A-4a)

and for n - p

A M(X,p) - gi (T+LTh+pT)[d(1+l)A,(1,p+l)F(T) + d(Z)A m(.,p)F(T) +

2d(t+l)d(P)AM(i,p+l)Am(Z,p)G(r)] dr.

(A-4b)

In (A-3) - (A-4) we also need the definitions

d(Z) - 6(f ( ' ) , f())(A5
J. j_f )(A5

A (1,n) 6 () (A-6)

and (cf. (82) - (83))

F(T) - T 2 f ri(t-s)dtds - Hi(T), (A-7a)
JAT AXT

-2 [(A+1)T f(X+I)T

F(tr) u T JAT+t JT+ r i(t-s)dtds - H I(T-T) (A-7b)

G() wT-2  (X+1)T ri (t-s)dtd J fT r (t-s)dtds. (A-7c)
XT XT+T o 0 T

Notice that the result of (A-3) is quite general and it accounts for the

intersymbol interference due to many data bits. However, because of the

ssumption (70) only the terms L-0, n-0 and 1m-i, n-Nb-i of (A-3) give

nonzero contributions, and thus (A-3) reduces to (84) - (85).
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APPENDIX B

ANALYSIS OF A SLOW FREQUENCY-HOPPED SYSTEM WITH POISSON TRAFFIC

In this section the packet error probability and the throughput rate

are determined for a particular frequency-hopped system when the number

of packet transmissions in a slot is given by a Poisson random variable.

The packet error rate and throughput under the Poisson traffic assumption

are significant in view of the local Poisson approximation and recursive

retransmission control strategies discussed in the next section.

The system of interest is assumed to be packet-synchronized. A

sufficient time-guard-band must be maintained between packet slots to

maintain sychronization in the face of differential delays due to the

spatial distribution of the stations. Synchronization at the level of

bits or bytes is not assumed.

Each packet transmission is declared successful or not according to

some criteria (a specific choice is given below). The following defini-

tions will be used

r(mjk) - P[m successfullk packets transimitted in slot]

k
r(k) -Z m r(mlk)

m0

and

P(k) - 1-r(k)/k.

Thus r(.Ik) is the distribution of the number of successes, r(k) is the

mean number of successes, and P(k) is the average probability of failure

for a typical packet, all given that k packets are transmitted in the slot.

Similarly, define

rp(mlG) - Ejr(mIK) I



r p(G) - E[r(K)]

and

P (G) - -r (G)/G

P P

where K is a Poisson random variable with mean G. Thus rp(. IG) and rp(G)

are the distribution and mean of the number of successes and Pp(G) is the

probability of failure of a typical packet, all given that the number of

transmissions in the slot is a Poisson random variable with mean G.

The specific FH system will now be described. The frequency spectrum

is divided into q frejuency slots and the packets are divided into n bytes each.

Each byte is transmitted at a frequency chosen from the q frequencies with

equal probability, independently of the frequencies chosen for other bytes.

It is then appropriate to use a burst-error correcting code -- we will

assume that a Reed-Solomon code is used. We will also assume that a

packet consists of exactly one codeword from a RS code for which up to t

byte errors can be corrected. This provides us with a natural definition

of a successfully transmitted packet. A packet is declared successfully

transmitted if at wost t byte errors occur. Both the (31,15)-code (with

n- 31 bytes, five bits per byte, 15 information bytes and t 8) and the

(255,127)-code (with n =255 bytes, eight bits per byte, 127 information

bytes and t -64) will be considered.

In the following let X - G/q, so that X is the traffic intensity per

frequency slot. Also, P(k,q) and Pp(X,q) will be written in place of

P(k) and Pp(G) in order to make the dependence on q explicit. Finally,

let 7(1Q,q) - X(1-Pp(X,q)). Thus n denotes the average throughput per

frequency slot.



Assume now that byte errors are independent in the absence of multi-

access interference. This independence assumption is true for an additive

white Gaussian noise (AWGN) channel. The assumption is also approximately

true for an AWGN channel with fading if q is so large that very few fre-

quency slots are hit by more than one byte for any packet, or if the fading

process of the channel model has a short correlation time compared to the

typical elapsed time between visits to a given frequency. Also, by inter-

leaving codewords, it is possible to approximately achieve the situation

with independent byte errors even for relatively slowly fading channels.

Now let p1 be the byte error probability in the absence of multi-

access interference. Then the byte error probability given that k

packets are transmitted in a slot is

2 1 k-l
Pkq 2

q

2 1
If byte synchronization were possible, the term -- in this expressionq

could be replaced by l/q. By the assumed independence of byte errors in

the absence of multi-access interference and the memorilessness of the

random hopping pattern, the byte errors (including multi-access interference)

are condiLionally independent given k. Thus the packet error probability is

n n-i
P(k,q) - E € k -

i-t+ P 1

which can be used to compute

kI

P (X,q) = •- -
X q)k k P(k,q)/Xq

k1I k!



and

il(X,q) - X(1-Pp('X,q))

which are the desired packet error probability and throughput per frequency

slot for Poisson traffic.

The computation of Pp(X,q) (and hence also i7(X,q)) simplifies in two

special cases: First, when q- i,

P p Q,l) - 1 - e -X (l - (lUI)

since P(k,l)= I for k > 2. This implies that

(XI)- e - (lP(l,l)).

That is, when q- l, the throughput is Xe -X (which is the throughput for a

noiseless slotted-ALOHA channel) times the success rate in the absence of

multiple-access interference.

The second special case is obtained by letting q and G tend to infinity

with X -G/q fixed. The limiting packet error probability is then

P (X,+-) - lim Pp(X,q) = lim P(k,q)

Xk/q
00

n i n-i
i-t+l

where

P- - lim Pk l-e 2  (l-P).

X-k/q
q~*OO

[ . I I I I I I I I I I I I " I [



Numerical results are given in Figs. 1-4 and in Tables 1-3. We see

in Fig. 1 that for no channel noise and using the (255,127) Reed-Solomon

code, a smaller packet error probability is achieved by q = +- than by

q =1 if and only if X is smaller than about 0.13. For an intuitive

understanding of this it is important to keep in mind the following two

facts. First, at the level of byte errors, the essential effect of varying

the parameter q is that as q decreases, the occurrences of byte errors

within a single packet become more positively correlated. Secondly, since

X is the traffic normalized per frequency slot, for fixed A the byte error

probability and therefore also the mean number of byte errors per packet

does not strongly depend on q. Summarizing these two facts, for larger q

the distribution of the number of byte errors tends to be more tightly

concentrated near the (almost q-independent) mean number of byte errors.

Thus, whether or not the packet error probability is smaller for large

q than for small q is determined by whether or not the error correcting

capability of the code can accomodate any number of byte errors "near"

the mean number of byte errors. Since the mean number of byte errors

increases with X, it follows that for small enough X the packet error

probability is smaller for large q, and conversely for large X the packet

error probability is smaller for small q.

When the byte error probability in the absence of multi-access

interference p1 is increased from zero to 0.1, the packet error probability

does not significantly increase for q - 1 while it does for larger values

of q. (Compare Figs. 1 and 2.) As a result, the value of X at which the

packet error probability for q -- surpasses the packet error probability

decreases to X -0.078. (See Fig. 2.) Thus in the presence of channel noise,

the crossover value of X can become quite small.



1

Turning to Figs. 3 and 4 we observe that the maximum throughput (over

all X) is much greater for q =1 than for q --. However, the maximum

throughput for q =1 can only be achieved by maintaining a mean traffic

intensity X -1 which causes the packet error probability to exceed .63.

Hence, although q -1 offers greatly increased maximum throughput, the

increase comes at the expense of either many retransmissions (which, if

possible at all, generally increase delays) or a high packet loss rate.

Discussion of Method

The method of using the local Poisson approximation as discussed here

and in the next section is admittedly only an approximation. It is impor-

tant to emphasize however that, as shown in [71, the method does lead to

channel stability (even taking approximations into account).

Another approach to the analysis of delay in a random-access system

would be to use a more detailed model of the transmitters -- allowing them

to obtain multiple packets and then buffer delay could be discussed. For

such analysis so far in the literature, the total system is usually

described as a (many state) Markov chain. For such analysis, the main

obstacle has been the large size of the state-space. Here we wish to

point out another difficulty which arises for such detailed analysis when

one considers spread-spectrum systems. The problem is that a detailed

exact analysis would require knowledge of the conditional distribution

r(.Ik) of the number of successes given k transmissions (whereas our

analysis only required use of the mean number of successes). Some authors

propose (implicitly) that the distribution of the number of successes is

binomial under the assumption that the outcomes of transmissions of distinct

I. packets form independent events. It is clear, due to the mutually destruc-

tive effect of collisions that this assumption is not true.

Ii



In summary -- before more detailed models can be effectively used,

the distribution r(.)k) must be better characterized. Nevertheless, we

have found retransmission control schemes which insure stable throughput,

even without knowledge of this distribution (see next section).



Table 1. Packet error probability and throughput vs. traffic-intensity-per-

frequency-slot X for q - 1 (no hopping during packet transmission).

q i P 0.0 Pl 0.1

Either Code RS-(31,15) RS-(255,127)

x P -1-e - _x 1 P -e-x(.9974) 1 P-l--X (- -.2Xl0 - 12 )

0.00 0 0 .0026 0 1.2 X 10 - 1 2  0
0.02 .0198 .0196 .0223 .0196
0.04 .0392 .0384 .0417 .0383 Same as columns for
0.06 .0582 .0565 .0607 .0564 Pl 0.0
0.08 .0768 .0738 .0793 .0737
0.10 .0951 .0905 .0975 .0902
0.12 .1131 .1064 .1154 .1062
0.14 .1306 .1217 .1329 .1214

0.16 .1479 .1363 .1501 .1360
0.18 .1647 .1503 .1669 .1500
0.20 .1812 .1637 .1834 .1633

0.25 .2212 .1947 .2232 .1942

0.30 .2592 .2222 .2611 .2216
0.40 .3300 .2681 .3314 .2674
0.50 .3934 .3032 .3950 .3025
0.60 .4512 .3293 .4526 .3284

0.70 .5034 .3476 .5047 .3467
0.80 .5501 .3595 .5518 .3585
0.90 .5934 .3659 .5945 .3650
1.0 .6321 .3679 .6331 .3669
1.5 .7769 .3347 .7774 .3338
2.0 .8646 .2707 .8650 .2700
2.5 .9180 .2052 .9181 .2047



Table 2. Packet error probability and throughput vs. traffic-intensity-
per-frequency-slot X for q = 10 frequency slots.

q-10 Pl = 0.0 P1 w 0.1

RS-(31,15) RS-(255,127) RS-(31,15) RS-(255,127)

x P 17 P P 17 P

0.00 0 0 0 0 .0026 0 1.24X10- 1 2  0
0.02 .0335 .0193 .0185 .0196 .0958 .0180 .1386 .0172
0.04 .0820 .0367 .0632 .0375 .1864 .0325 .2599 .0296
0.06 .1400 .0516 .1240 .0525 .2725 .0436 .3655 .0381
0.08 .2031 .0637 .1934 .0645 .3531 .0517 .4571 .0434
0.10 .2684 .0731 .2664 .0733 .4274 .0572 .5364 .0464
0.12 .3335 .0800 .3395 .0792 .4953 .0606 .6047 .0474
0.14 .3968 .0844 .4102 .0825 .5568 .0620 .6635 .0471
0.16 .4572 .0868 .4769 .0837 .6121 .0620 .7140 .0457
0.18 .5140 .0874 .5388 .0830 .6615 .0610 .7572 .0437
0.20 .5667 .0866 .5955 .0809 .0753 .0589 .7942 .0411
0.25 .6801 .0800 .7138 .0715 .7937 .0515 .8645 .0339
0.30 .7983 .0695 .8010 .0595 .8574 .0428 .9113 .0266
0.40 .8835 .0465 .9080 .0365 .9337 .0265 .9626 .0150
0.50 .9438 .0280 .9597 .0201 .9700 .0150 .9845 .0078
0.60 .9737 .0157 .9827 .0104 .9860 .0079 .9936 .0038

* ~~.iaz
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Fig. 2. Block error probability vs. traffic-intensity-per-frequeflcy.slot A.
Independent byte errors -- error probability pl- 0.. .
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I Fig. 3. Throughput vs. traffic-intensity-per-frequency-slot X~. No channel

Lnoise (p 1 0). For q-1, curves coincide.
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APPENDIX C

RECURSIVE RETRANSMISSION CONTROL -- APPLICATION TO
FREQUENCY-HOPPED (FH) SPREAD-SPECTRUM SYSTEMS

Although the models of the user population and the feedback information

are quite simple, the concepts of [5]-[7] readily extend to more complex and

realistic settings. In order to illustrate this point, we shall briefly

describe how the decentralized dynamic control procedure in [51 can be adapted

to the frequency-hopping system described in the previous appendix. For

definiteness, suppose that the Poisson model in [5] is used to describe how

the population of stations acquires packets to be transmitted.

Our research has shown that it is desirable for the users to have some

feedback information in order to suitably control the traffic level. We

shall now describe a method for the users to obtain such information which

is appropriate for use in the Navy's ITF network. During each slot, user a

uses a random hopping pattern to hop a receiyer among the q frequencies.

The pattern has the same distribution as patterns used to transmit packets.

For each dwell time the user decides (by a simple threshold test) whether

or not the channel was free during that dwell time in the frequency monitored.

The user then simply counts the number of dwell times in the slot for which

it was decided that the channel frequency was not free. Let Yta denote the
t

count of user a for slot t. The variables Yt comprise the feedback infor-tI
mation upon which the retransmission control strategy described next is based.

Following [51, we suggest that user a recursively computes the sequence

f via the multiplicative rule
t

f min(f a a(Y a), 1)
St+l - t )()'

Then if user a has a packet to transmit, it transmits it in slot t with

probability f . A possible choice for the function a is

*



a(y) -1- - ) (2)

q

where
* *

p - 1 - exp(-2X )

and X is a desired value of the traffic intensity per frequency slot.

To understand this choice of retransmission policy, note first that

if the number of packet transmissions in a slot is Poisson with mean

G-qX, then the probability that a frequency slot is used during any portion

of a given one-byte dwell time is

p-i- exp(-2X)

When X-X , p-p . That is, p is the probability that a frequency is

occupied during a given one-byte dwell time when the number of packet

transmissions is Poisson with the desired mean-per-frequency-slot X

Now given the current values of the retransmission probabilities ftt

for all a and given the set At of users which have a packet to transmit,

the conditional distribution of the number of packet transmissions in slot

t is approximately Poisson with mean

Gt - fL + U (4)
cEAt t

(where m is the rate at which new packets are transmitted) by the local

Poisson approximation described in (51 and (9]. Hence,

E [Y'If: , all al - q(q tt (5)

where

Pt- 1 - exp(- 2 Gt/q)

ALA
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Thus by (1) and (4),

E [ Gt+lIft, all a E [ faa(Ya) + AIfa, all a]
aEA +i t t t

+ I fa E[a(Yt) If(, all a]
a C A t+ 1

and since (by (2) and (5))

yct
a aa

E[a(Y )Ifa, all a] = E [l-7(- - p )If , all a

= l-T(pt-p )

= 1+7(exp(-2G t/q) -exp(-2G /q))
tJ

we have

E [Gt+iIf, all a] = {l+y(exp(-2G /q) -exp(-2G*/q))}G

Hence, Gt+ I will tend to be larger than Gt (resp. smaller than G ) if Gt is

smaller (resp. larger) than the desired traffic level G That is, Gt will

tend to drift toward the desired traffic level G

Using the methods of [71 it can be shown that with this transmission

policy the channel is stable whenever the input rate P is smaller than the

average throughput rate qn(X ,q) corresponding to the desired traffic

,intensity per frequency slot X



APPENDIX D

ACKNOWLEDGMEENT BASED RETRANSMISSION CONTROL

In [9] we define and analyze the class of Acknowledgement Based Retrans-

mission Control (ABRC) schemes for random access. Such schemes require no more

feedback information than the original ALOHA scheme in that each user need

only learn whether or not its own transmission is successful. Such small

feedback requirements are desirable in a spread spectrum environment when

channel monitoring is difficult. 0a the basis of approximations developed

in [5] under this contract and an equilibrium analysis, we have found that

such schemes can provide satisfactory performance for both an infinite and

finite number of users, as long as the retransmission probabilities are

properly chosen.

We also introduced the possibility that after a packet has collided a

certain number of times then it is rejected and no longer retransmitted.

It appears that the probability that a given packet must be rejected can

be kept to a satisfactorily low level, while allowing rejections improves

stability considerably. In Fig. 1 the average probability of success and

the probability of ultimate rejection PR are given as a function of the

allowed number of retransmissions k for the infinite user model with input

rate X -0.3. For k -12 the probability of rejection is about one in ten

thousand. However if k is chosen to be too large then undesirable bistable

behavior appears.

4i



7L .741

2 .662 .38

3 .637

4 .622 .023

5 .613 .09

6 .615 .3035

7 .6 4 .3013
3 .61.4 5 : O

"

.614 ,x x O
"

0 .613 a x 10

S.1 .613 3 x LO-

". .613 L x 0O
"

13 .613 -xL0

, .613 1.033 2x
6  .625

-5 .0196 <1.0 .- ,43

;.6 " 01- .513

17 .0085 " . 65

L S3 .0059 .399

L9 .0041 I .925

-_ .6120 0.0 0.0 1.0

Fig. 1. Equilibrium values of success probability B and ultimate
probability of rejection for X=0.3 packets/slot in

infinite user model.

iI



APPENDIX E

THE METHOD OF MARKOV PROCESSES WITH PHASES

Another area of progress under this contract has been the development

of a numerical technique, the "method of phases", which we have discovered

is suitable for evaluating certain random access algorithms in the presence

of fluctuating traffic rates. Our main motivation is that the usual

Bernoulli or Poisson models of arrival processes are not "bursty" enough

to realistically model traffic which random access schemes are likely to

face in practice. So far the method has been successful for evaluation of

TDMA with buffered users and varying arrival rates. The method will now

be briefly described, following [8].

Consider a TDMA system with m users and arrival rate a packets/slot/

user. Let Nt denote the number of packets in the first user's buffer and

let e t E [l,...,m} denote which user is transmitting during slot t. (B is

the "phase" of the system relative to the first user.) Then (Ntt ) can

be modelled as a discrete-time Markov chain on Z+ x fl,...,m] with transi-

tion matrix (in the following matrices, only non-zero entries are

indicated):

A00 A01

A A1  A

A 0  A A20 1 2

A0 1 A2

where the blocks of P are the mXm matrices



0 i-a 0 a

0 A= A2 =

I-C a

-aa 0 0

0 I-a 0 a

1-a a

A A A1
10 00 O

1-a a

I-a I-a 0 a 0

In [8] a general method is presented for obtaining the invariant distribu-

tion of such chains. The general procedure is as follows [8]:

Step 1: Compute B, where B is the minimum non-negative solution to
the equation

B = BA2 BAo(I-A) + (I-A1 )'I

Successive substitutions starting with B(0 )  = 0 yields an increasing
sequence converging to B.

Step 2: ,Find r0 , the invariant distribution for the mXm transition
matrix P0 a A00 + A01BA10"

Step 3: Compute the constant

c - TO(I+A0 1 B(I-R)- 1I)e

where e T (i,...,i) and R - A2B.

Then the invariant distribution for P is x (xoX0,...) where

x T0 /c

and
Bk- i

... a X. A0 1 .BR k-.k 1.

_411



I In [81 analogous results are also derived when P* is truncated to a finite

number of levels and boundary states are added. This provides a computa-

tionally tractable method to analyze queues with finite buffers.

Using this approach, the invariant distribution for the TDMA example has

been found analytically and numerically [10]. Our results, such as expres-

sions for the average backlog, agree with those obtained by other methods.

The advantage of this approach is that it readily extends to the case when

the arrival rate fluctuates according to an underlying Markov process, for

then the system still has the same form as above but for different choices

of the Ai 's. This extension has been carried out and is presented in [10].

An example of our numerical results are presented in Fig 2. In

this example the number of users M was taken to be 4 or 10. In each case

the mean arrival rate was p - 96% of the channel capacity, and the actual

arrival rate fluctuated between two different arrival rates, where the

switching was governed by a two state Markov chain. The dashed lines

correspond to an example when both of the input rates were chosen below

the system capacity while the solid lines correspond to an example when one

of the two rates is above the system capacity. The curves give the average

backlog N for a given user versus y, where y is a parameter which indicates

how fast the rate is switched. For small y the switching processes is

slow so that a large backlog results when one of the two rates is above the

system capacity (see solid lines).

our reason for studying arrival processes with varying rates is that

we feel it provides a more realistic model of bursty traffic than does the

usual Poisson arrival model. We are now in the process of analyzing other

random access disciplines in the presence of varying traffic rates. We

suspect that many random access schemes will perform more favorably relative

to the performance of TDMA when the traffic arrival rates vary dynamically.
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In addition, we have found the method of phases developed in 18] under

this contract to be useful in the analysis of certain routing schemes in a

packet switched network [10]. (This portion of [i0] was supported by a

JSEP contract.) An important product has been an increase in our under-

standing of the advantages and limitations in the use of Markov processes

with phases. We feel that it is an important and useful technique which

will find many applications both within and beyond the multiple access area.

Nt

I L%

l '

OL 14%

Fig. 1. Average backlog of a user in TD14A system as a function
of the rate of traffic variation.
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